PLUGGING IN THE EPROM

When you have the switches in the correct position for the
the type of EPROM you will be using, you may plug the EPROM
into the ZIF (Zero Insertion Force) socket. This is the large
blue socket to the left of the guide. The lever above (and
below) the socket will securely clamp the leads of the EPROM
when it is moved to the right. First, make sure that the lever
is to the left. This will allow you to easily insert the EPROM
into the socket. 1If it is a new EPROM, the leads may be bent
out a bit, and may have to be bent in slightly. ANOTHER
IMPORTANT NOTE: If the EPROM is inserted into the socket
incorrectly, you may cause (you guessed it!) catastophic
failure of the EPROM. Pin #1 of the EPROM is on the same edge
as a notch in the middle of one edge, as shown in figure one.
Pin #1 must be toward the top of the ZIF socket. There is a
note at the top of the card reminding you of this, and two dots
on the left side of the socket showing the location of pin #1.
Note that if you have a 28 pin device (2764, 27128, 27256, or
27512), pin #1 is on the upper left side of the ZIF socket. If
you have a 24 pin device (2708, 2716, or 2732), pin #1 is the
third pin down from the top on the left of the ZIF socket.
Thus, if you have a 24 pin device in the socket, there will be
two holes visible above the EPROM on each side of the ZIF
socket.

INSTALLATION

With power off, plug the PROmGRAMER into slots 3, 4, 5, or
7 of your APPLE][,][+, or //e. Turn on the power, boot the
disk, and the "HELLO" program on the disk will give you one
page of information (duplicated below). NOTE: If you have not
yet done so, make a copy of the disk, and put the original in a
safe place. You may use any standard copy program.

PROGRAMMING THE EPROM

There are four programs on the disk labled EPB3, EPB4,
EPB5, and EPB7. The number corresponds to the slot that the
PROMGRAMER is plugged into. BRUN the appropiate program. For
example, if your PROmMGRAMER is plugged into slot 4, type "BRUN
EPB4". You will then be asked by the computer to type in the
type of EPROM you are using. (Type in a number between 0 and
7). You will then be presented with a menu of choices. First,
we will mention a few choices that do not show on the screen on
this first version, but are available to you.

BlanK check. Checks that the EPROM is erased.
Help. Goes back to the start’'of the program.

EXits .the program and goes to APPLESOFT

(type "CALL 2048" to restart).

Goes to Monitor. Restart program with "800G"

= X o R

Choices that show on the screen are:

L Load memory from the EPROM.

B Burn the EPROM from memory. (I suppose that we

- should mention that BURN is colloquial for program.)

D Display memory

C Check that programming was correct (you can also use
V for Verify.)

The commands K, H, M, and X do not need any parameters.
The commands L, B, D, and C (or V) need some further
information (at least the first time). Anthropomorphically
speaking, you have to tell the computer which area of memory
you are using (called the WORKING ARRAY). You do this by
specifing the starting address (symbolized by SSSS), and the
ending address (EEEE). You also have to tell the computer
where you want to start programming the EPROM. You do this by
giving is a relative address (PPPP) relative to the start of
the EPROM, where the start is 0000. All these addresses are in
hexadecimal.

Programming the EPROM basically consists of taking an area
of memory, and transferring it to the EPROM. The PROMGRAMER
takes care of the mechanics, and it is up to you to make sure
to get the correct data into the EPROM. We will show this by
example, but first, a word about the driver program (the one
that makes the PROmMGRAMER work).

The program loads into memory at $800. (The dollar sign
signifies that the number following is in hexadecimal). The
length of the program is $637, bringing you to $e37. The rest
of memory (up to $9600 where DOS begins) is available to you as
the working array. A memory map is shown in figure 2.

To program an EPROM, you should have a binary file ready
on disk with the necessary information. The length of the data
you can fit in depends on the specific EPROM you are using.
Following is a table of EPROM types, the length of the file
that can fit in, and programming times;

EPROM TYPE LENGTH LENGTH TIME TO PROGRAM

(in hex) (in dec.) (min. and sec.)
2708 400 1024 0:51
2716 800 2048 1:42
2732 1000 4096 3:24
2764 2000 8192 6:50
27128 4000 16384 - 13:40
27256 8000 32768 27:k§
27512 10000 65536 54:36

For our first example, let’s try programming a 27128 with
a unique pattern that tests every possible combination.
Looking at the above table, we can see that the maximum length
of the file is $4000 bytes. On the disk that we sent you is a
program called "TEST PATTERN". This just consists of a
sequence of numbers from 0 to $FF, repeating as necessary to
£ill the $4000 byte range. First, we set the switches, plug in
the EPROM, and plug it into a slot (REMEMBER - POWER OFF!).
Turn on the power, boot DOS, and type;

BLOAD TEST PATTERN

This pattern will load starting at location $1000. Now, we
need the PROMGRAMER driver program, so (assuming the card is in
slot #4) we type;

BRUN EPB4

Since we are using a 27128, type the number 4, which is
the type number for a 27128.

We will now "burn" the EPROM with the memory range from
$1000 to $4FFF, starting at EPROM location 0, so we type:

B 1000 4FFF 0000

Note that it is necessary to put in the blank spaces, and
four digits per number.

Now, make yourself a cup of tea, and find something to pass
the time. Each byte takes 50 milliseconds to program (0.05
seconds), so we have a wait of about .05 seconds times 16384 =
819.2 seconds, or 13 minutes 39.2 seconds. Just so you can
tell that something is happening, the computer will beep at you
every time is completes a page of memory (256 bytes), about
every 13 seconds.

After programming is complete, the PROmMGRAMER will check
if the job was doné correctly. It will compare each byte of
memory with the corresponding location in the EPROM, and verify
that both are the same. If not, the computer will beep and
type the message "ERRXXXX", where XXXX is the address of the
offending byte. If there are no errors, the computer will beep
after each page of memory is verified. When the cursor
reappears, the job is done.

To protect ourselves from angry calls, we have to tell you
that we recommend that you power down before removing the
EPROM. As a practical matter, we have never blown anything by
removing the EPROM with power on, but if you DO blow something,
forget where you read this. However, you MUST turn off power
before removing the card, or dire consequences will follow.

If you remove the EPROM without shutting of power, and
you want to program another with the same information, all you
need to type is "B". Since the parameters have not changed,
you do not need to retype them. If you forget to type in the
parameters the first time, you will get a beep and an "ERR"
message.

READING EPROMS

Turn off the computer to assure yourself that the test
pattern in memory has disappeared. Turn the computer back on,
and BRUN EPB4. Type 4 (the eprom type), and;

L 1000 4FFF 0000

This command will load memory locations $1000 through
$4FFF with the information in the EPROM starting at EPROM
location zero. To display the memory, type D. (no parameters
are necessary, as they are the same as the last entry). You
should see the test pattern appear. (You may stop the listing
with a control-S, and continue it with another keypress). The
information you are looking at was stored inside the EPROM. At
this point, you can be sure that the PROmGRAMER and your
technique are working.

PROGRAMMING THE 27256

" For some reason, most people who get into programming
EPROMs start their files at $2000. That is a nice round
number, it won 't interfere with the PROmMGRAMER driving program,

as it does seem to be a standard, so why not continue to use
it? Well, we’'ll tell you why. If you start at $2000, the file
for a 27256 will end at $9FFF. We all remember (don 't we?)
that DOS resides starting at $9600, so we have a conflict. 1In
this type of conflict, no one wins. We must avoid overwriting
DOS. 1If we start the file at $1000, it will end at $90FF
neatly avoiding problems, so let’s set a standard: All files
will start at $1000 (naturally, you may start at another
location if it is necessary for a particular job).

One other thing; under DOS 3.3 the maximum file length you
can save to disk is $7FFF bytes, one byte less than that needed
for a 27256 (amazing how often things like that seem to
happen). We can do one of two things, save one byte less than
we need, or change DOS. If you type POKE -22172,255, DOS will
now accept files up to 64 Kbytes long. We suggest that you do
not INIT any disks after making this change, because your DOS
is no longer standard (until you re-boot).

PROGRAMMING THE 27512

The 27512 can hold 64K of memory, which is the entire
memory of the standard APPLE]{. Obviously, most of that is
something we would not want to program, so we must do it in two
steps. Assuming the files are saved as "FIRST HALF" and
"SECOND HALF", we would proceed somewhat as follows:

BLOAD FIRST HALF, A$1000
BRUN EPB4
7 [EPROM TYPE]
B 1000 90FF 0000
[after 28 minutes]
X [goes to APPLESOFT] =
BLOAD SECOND HALF, AS$1000
CALL 2048 [since the program is still intact]
7
B 1000 90FF 8000

YOU'RE ON YOUR OWN, NOW

Well, not quite, we are available to give you any
necessary assistance. Call us at (805) 685-1931. We may be
moving after December 15, so you might get operator intercept
which will give you the new number.

